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We consider a driven Brownian particle, subject to both conservative and nonconservative applied forces,
whose probability evolves according to the Kramers equation. We derive a general fluctuation relation, ex-
pressing the ratio of the probability of a given Brownian path in phase space with that of the time-reversed
path, in terms of the entropy flux to the heat reservoir. This fluctuation relation implies those of Seifert,
Jarzynski, and Gallavotti-Cohen in different special cases.
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I. INTRODUCTION

Fluctuation relations of increasing generality have been
derived in recent years, starting from the Evans-Searles rela-
tion �1� and the Gallavotti-Cohen theorem �2�, via the
Jarzynski equality �3�, the Hatano-Sasa relation �4�, to arrive
at the recent and rather general Seifert relation �5� from
which the previous identities can be derived by simple ma-
nipulations. These results have been obtained by considering
situations of increasing generality, and it appears that a suf-
ficient condition for fluctuation relations to hold is the exis-
tence of mechanical equilibrium at each instant of time �6�.
However, this condition is not necessary, as shown by the
derivation by Kurchan �7� of some fluctuation relations for a
Brownian particle with inertia.

We wish to point out that it is possible to obtain a com-
pact derivation of the fluctuation relations by deriving a key
relation between the probability of a path in phase space and
that of its time-reversed image, for a particle with inertia.
This relation encompasses the relation derived by Crooks �8�
for a particle subject to conservative forces and extended by
Seifert �5� to arbitrary forces in the overdamped regime. Our
derivation is inspired by Kurchan’s one �7�, but is made more
compact and more general by considering the generating
functional of the conditional probabilities for the paths.

As a bonus, we obtain an explicit expression for the en-
tropy production and the heat flow for a Brownian particle
with inertia, which generalizes the expression introduced by
Sekimoto �9�, valid in the overdamped regime.

The key relation between the probability of a path �,
conditioned on its initial point, and that of the reverse path �̃,
conditioned on its initial point, is derived in Sec. II. The
relation involves a functional of the path, whose physical
interpretation as the entropy flow into the heat bath is given
in Sec. III. In Sec. IV, using the formalism previously intro-
duced, the explicit expression of path probability as a form
of the Onsager-Machlup functional is recovered, and the
fluctuation relation is shown to hold for such a functional. A
brief discussion follows, while the derivation of the relation
between the time derivatives of “global” and “local” entro-
pies is given in the Appendix.

II. A GENERALIZED CROOKS IDENTITY

We consider a particle in d dimensions, whose evolution
is described by the Langevin equation

mr̈ = − �ṙ −
�U��r�

�r
+ f� + ��t� , �1�

where � is a time-dependent parameter, and f� is a non con-
servative force. We assume that ��t� is a delta-correlated
white noise with variance 2�T. Boltzmann’s constant is set
equal to 1 throughout.

We denote by x= �p ,r� the microstate, and by P�x , t� the
probability distribution function �PDF� of the process �1� in
phase space. This function evolves according to the differen-
tial equation

�P�x,t�
�t

= L��t�P�x,t� , �2�

where L� is the Kramers operator

L�P =
�

�r
· �−

p

m
P� +

�

�p
· ���

p

m
+

�U�

�r
− f��P + �T

�P

�p
� .

�3�

Let us define the time-reversal operator I by

I�p,r� = �− p,r� , �4�

and the associated operator Qt by

Qt��x� = e−E�x,t�/T��Ix� . �5�

We assume that the system energy, defined by

E�x,t� = 	
i=1

d
pi

2

2m
+ U��t��r� , �6�

is invariant under time inversion

E�Ix,t� = E�x,t� . �7�

The microscopic reversibility of the process �1� implies the
following relation:

Qt
−1L��t�Qt = L��t�

† +
f��t�

T
·

p

m
. �8�*Present address: Dipartimento di Fisica, Politecnico di Torino, C.
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In the following the symbol � will indicate an arbitrary
path in the system phase space:

�:t→
�

x�t� . �9�

For any arbitrary function a�x , t� and any arbitrary path � in
the system phase space we define the quantity A�t , t0 ,�� as
the integral of a�x , t� over the interval �t0 , t� along the given
path �

A�t,t0,�� 
 �
t0

t

dt�a„x�t��,t�… . �10�

The joint probability distribution function ��x ,A , t� evolves
according to the differential equation

��

�t
= L��t�� − a�x,t�

��

�A
. �11�

Let us define the function

��x,t;x0,t0;�,a� = �
x�t0�=x0

x�t�=x

D�P���

	� dA
„A − A�t,t0,��…eA�t,t0,��

=� dAeA��x,A,t� , �12�

where we make explicit the fact that � depends on the initial
condition x0 , t0, and is a functional of ��t� and a�x , t�. Then
� satisfies the following equation:

��

�t
= L��t�� + a�x,t�� . �13�

A number of fluctuation relations can be easily derived
from this expression. To illustrate this point, we report here
the derivation of the Hatano-Sasa relation �4�. Let

PSS�x,�� = e−��x,�� �14�

be the steady-state distribution function associated to the op-
erator L�, which satisfies

L�PSS�x,�� = 0. �15�

Let us choose the arbitrary function a�x , t� as follows:

a*�x,t� = �̇�t�
� ln PSS

��
= − �̇�t�

��

��
, �16�

so that Eq. �10� reads

A = − �
t0

t

dt��̇�t��� ��

��
�

x�t��,��t��
. �17�

Using the definition of �, Eq. �12�, one finds


�x − x�t��eA�t�� =� dAeA��x,A,t� = ��x,t;x0,t0;�,a*� .

�18�

But � is a solution of Eq. �13�, which for the particular
choice a=a* takes the form

��

�t
= L��t�� − �̇

��

��
� . �19�

The solution of this last equation, satisfying the initial con-
dition ��x , t0�= PSS(x ,��t0�), is �=e−�(x,��t�)= PSS(x ,��t�),
and thus Eq. �18� becomes


„x − x�t�…eA�t�� = PSS
„x,��t�… , �20�

which is the Hatano-Sasa identity, and reduces to the Jarzyn-
ski equality when the nonconservative force f� vanishes
throughout.

Now, let the functional �̃�x , t ;x0 , t0 ;� ,a� be defined by

�̃�x,t;x0,t0;�,a� 
 Qt
−1��x,t;x0,t0;�,a�Qt0

. �21�

One can easily check that �̃ satisfies the evolution equation

��̃

�t
= Lt

†�̃ + � 1

T

�E

�t
+

f��t�

T
·

p

m
+ a�Ix,t���̃ . �22�

Using Eqs. �5� and �12�, we obtain the following equality:

�̃�Ix,t;Ix0,t0;�,a� = e�E�x,t�−E�x0,t0��/T��x,t;x0,t0;�,a� .

�23�

Furthermore, upon integration of Eq. �22�, we obtain

�̃�Ix,t;Ix0,t0;�,a� = ��Ix0,t;Ix,t0;�̃, ã + w� , �24�

where we have defined, "t�� �t0 , t�,

t̃� = t − �t � − t0�; �25�

�̃�t �� = ��t̃��; �26�

ã�x,t �� = a�Ix, t̃��; �27�

w�x,t� =
1

T
� �E

�t
+ f��t� ·

p

m
� . �28�

Thus, substituting Eq. �23� into Eq. �24� we obtain

��x,t;x0,t0;�,a� = ��Ix0,t;Ix,t0;�̃, ã + w�e−�E�x,t�−E�x0,t0��/T.

�29�

We choose a�x , t� as

a�x,t� = ��t�x = ��p��t� · p + ��r��t� · r . �30�

Then, using the definition of �, Eq. �12�, we obtain the
generating functional for the path probabilities
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��x,t;x0,t0;�,�x� = �
x�t0�=x0

x�t�=x

D�P���exp��
t0

t

dt���t��x�t��� .

�31�

Now, for each path �, starting from x0 and finishing in x, the
following equality holds:

E�x,t� − E�x0,t0� = �
t0

t � �E

�t�
dt� + � �E

�x
�

x�t��
dx�t��� . �32�

In this expression, the integral has to be interpreted accord-
ing to Stratonovich, otherwise additional terms would ap-
pear. The relation �31� holds for arbitrary �, and thus leads to
an analogous relation for the probabilities of the paths �
conditional on their initial points. Indeed, given the path �
defined by �9�, we formally have

P��,��x0,t0� =� D�e−�t0
t dt���t��x�t����x,t;x0,t0;�,�x� ,

�33�

where we have introduced the functional integration over �
from −i to +i. Applying this operation to Eqs. �29� and
�31� we obtain the central result

P��,��x0,t0� = P��̃,�̃�Ix,t0�exp��
x0

x dQ2

T � , �34�

where

dQ2�t� = − � �E

�x
�

x�t�
dx�t� + f��t� ·

p�t�
m

dt . �35�

Thus, Crooks’s and Seifert’s identities (�8, Eq. �13��, �5, Eq.
�14��) hold also in the case in which the Brownian particle is
subject to conservative and nonconservative forces, which do
not necessarily equilibrate mechanically with the friction
force at each instant in time. Note that the expression of dQ2
must be supplemented by its interpretation as a Stratonovich
differential.

Seifert �5� has taught us how to derive the relevant fluc-
tuation relations from the identity �34� by introducing care-
fully chosen “initial” and “final” PDF’s p0�x0�, p1�Ix�. For
example, let p0�x0� be an arbitrary normalized initial condi-
tion at time t0, and p1�x� be the corresponding evolved PDF
at time t, and define

R = �
t0

t dQ2

T
+ ln

p0�x0�
p1�x�

. �36�

Then


�x − x�t��e−R� =� dx0� D�P��̃,�̃�Ix,t0�p1�x� = p1�x� .

�37�

This result can be obtained by changing the integral over �
into an integral over �̃ and by exploiting the normalization
of the conditional probability of the evolution from Ix to Ix0
over the final state Ix0. Then one can interpret R as the total
entropy change, being the sum between the entropy given to

the heat bath and the entropy change of the particle, as we
shall see in the next section. The Jarzynski equality also
follows from Eq. �34� by taking for p0�x0� and p1�x� the
equilibrium distributions corresponding to the initial and fi-
nal states. If one takes instead � as a constant, and collects
together the paths � which yield a given value � of �dQ2 /T,
one obtains a “transient” form of the Gallavotti-Cohen rela-
tion

P���
P�− ��

= e�. �38�

The Gallavotti-Cohen relation follows in the limit of long
times, by setting

P��� � et����, �39�

where

� = t� , �40�

and where ���� �implicitly defined by Eq. �39� itself� is the
large-deviation function for the entropy production rate.

III. ENTROPY PRODUCTION AND HEAT FLOW

We provide here the physical interpretation of the quantity
dQ2�t�. Let us define the local entropy

s�x,t� = − ln P�x,t� . �41�

The Shannon entropy of the system is thus given by

S�t� 
 s�x,t�� = −� dxP�x,t�ln P�x,t� . �42�

The time derivative of this quantity is given by

�S�t�
�t

= −� dx� �P�x,t�
�t

ln�P�x,t�� + P�x,t�
� ln P�x,t�

�t
�
�43�

=−� dx
�P�x,t�

�t
ln P�x,t� �44�

=� dx��T� p

Tm
+

� ln P

�p
�2

P

− �
p

m
· � p

Tm
+

� ln P

�p
�P� , �45�

where the integral of the second term of Eq. �43� vanishes
because of the conservation of the PDF normalization. For
the details of the calculations see the Appendix, Eq. �A1�. On
the other hand we have

��ds�x�t�,t�
dt

�
x�t�=x

�
�

=� dxP�x,t���T� p

Tm
+

� ln P

�p
�2

− �
p

m
· � p

Tm
+

� ln P

�p
�� . �46�

where ¯�� indicates the average over the PDF P�x , t� and
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over the realizations of the process. For the details of the
calculations see the Appendix, Eqs. �A2�–�A6�. Thus we ob-
tain the result

dS�t�
dt

=��ds„x�t�,t…
dt

�
x�t�=x

�
�

. �47�

Let us now define the quantity

dQp = dQ2 + T� �s

�r
· dr +

�s

�p
· dp�

= − � �E

�x
�

x�t�
dx�t� + f��t� ·

p�t�
m

dt

+ T� �s

�r
· dr +

�s

�p
· dp� . �48�

We have

��dQp�x�t�,t�
dt

�
x�t�=x

�
�

= ��� p

m
+ T

� ln P

�p
�2�

= T
dS�x,t�

dt
+ �

p

m
· � p

m
+ T

� ln P

�p
� .

�49�

The last equation indicates that the average of Q̇p /T is a
non-negative quantity, and can thus be interpreted as the en-
tropy production rate of the process. Furthermore, rearrang-
ing Eq. �49� we have

dQp − dQ2 = T� �s

�r
· dr +

�s

�p
· dp� . �50�

Since one finds

��ds�x�t�,t�
dt

�
x�t�=x

�
�

= � �s

�r
· dr +

�s

�p
· dp�

�

�51�

�see the Appendix, Eqs. �A2� and �A3��, exploiting Eq. �47�,
one ends up with

�S 
 �
t0

t dS�t�
dt

=
1

T
�

t0

t

dQp − dQ2��. �52�

Thus, we can interpret the quantity dQ2 /T as the entropy
flow into the heat reservoir.

IV. FLUCTUATION RELATIONS AND THE
ONSAGER–MACHLUP FUNCTIONAL

Following the approach outlined in �10�, and introducing
the variable ��p� conjugate to p and ��r� conjugate to r, we
can express the functional � as

��x,t;x0,t0;�,a� = lim
N→

� �
k=1

N
d�kdxk

�2�i�2d

	
�x − xN�exp�	
k=1

N

��k�xk − xk−1�

+ �L��k,xk−1,tk−1� + a�xk−1,tk−1���t�� ,

�53�

where

�t =
t − t0

N
, �54�

tk = t0 + k�t , �55�

�x = ��p� · p + ��r� · r , �56�

L��,x,t� = ��r� · �−
p

m
� + ��p� · ��

p

m
+

�U��t�

�r
− f��t�

+ �T��p�� . �57�

In the continuum limit, Eq. �53� becomes

��x,t;x0,t0;�,a� = �
x�t0�=x0

x�t�=x

D�D�eS��,�,a�, �58�

where

S��,�,a� = �
t0

t

dt����t��ẋ�t�� + L���t��,x�t��,t�� + a�x�t��,t���

�59�

is the “action” associated with the given path �. From Eq.
�34�, taking into account Eq. �35�, we obtain

��Ix0,t;Ix,t0;�̃, ã + w� = �
x�t0�=Ix

x�t�=Ix0

D�D�̃eS��,�̃,ã+w�

= �
x�t0�=x0

x�t�=x

D�D�eS̃��,�,a�, �60�

where

S̃��,�,a� = S��,�,a� +
1

T
�

t0

t

dt�

	�� �E

�x
�

x�t��
ẋ�t�� − f��t�� ·

p�t��
m � . �61�

The second term on the rhs of the last equation corresponds
to −�t0

t dQ2, where dQ2 is defined by Eq. �35�, along the
given path �.

We can obtain an explicit expression for the probabilities
of the path by performing the Gaussian functional integral
over �. By taking a�x , t�=0 from Eq. �12� and Eq. �53�, we
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obtain that the probability of a given path � is given by

P��� = lim
N→

� �
k=1

N � d�k

�2�i�2de�k�xk−xk−1�+L��k,xk−1,tk−1��t� .

�62�

If in the last equation we substitute the expression for L as
given by Eq. �57�, we obtain

P��� = lim
N→

� �
k=1

N � d�k
�r�

�2�i�d

d�k
�p�

�2�i�d�
	exp�	

k=1

N ��k
�r���rk −

pk

m
�t� + �t�T��k

�p��2 + ��p�

	��pk + �t��
pk

m
+ � �U��tk�

�p
�

rk

− f��tk�����
� lim

N→
�
k=1

N


��pk −
pk

m
�t�

	exp�−
1

4�T�t
��pk + �tG�pk,rk,tk��2� · , �63�

where

G�pk,rk,tk� = �
pk

m
+ � �U��tk�

�r
�

rk

− f��tk�. �64�

Equation �63� indicates that the probability of a given path is
nonzero only if the path satisfies

p = mṙ , �65�

as expected. Some care has to be taken in passage to the
continuum limit in Eq. �63�; the argument of the exponential
in this equation reads

	
k=1

N

−
�t

4�T
��pk

�t
+ G�pk,rk,tk��2

. �66�

We consider separately the large N limit of each of the terms
appearing in this sum: the first and the second term read

lim
N→

�−
�t

4�T
�	

k=1

N ��pk

�t
�2

= −
1

4�T
�

t0

t

dt��ṗ�t���2, �67�

lim
N→

�−
�t

4�T
�	

k=1

N

�G�pk,rk,tk��2 = −
1

4�T
�

t0

t

dt�G2�p,r,t�� ,

�68�

respectively. The expression appearing on the rhs of Eq. �67�
is of course only formal, since the weight of the functional
integral is concentrated on functions that are continuous but
not differentiable. The double product reads

lim
N→

�−
1

2�T
�	

k=1

N

��pk − pk−1� · G�pk,rk,tk��


 −
1

2�T
�I� � dp · G�p,r,t� , �69�

and, as discussed in Ref. �11�, the value of the integral de-
pends on the discretization scheme: we have consequently
used the prefix �I�, indicating that the integral is the con-
tinuum limit of an Itō sum. We can express this quantity in a
more convenient way by writing, in analogy with Itō’s for-
mula �see Eqs. �17�–�19� in Ref. �11� and references therein�

�I� � dp · G�p,r,t� = �
t0

t

G„p�t��,r�t��,t�… · ṗ�t��dt�

− �T�
t0

t

dt��	
�=1

d
�G�

�p�
�

p�t��,r�t��,t�

.

�70�

Thus, substituting Eqs. �67�, �68�, and �70�, into Eq. �63�, in
the continuum limit Eq. �62� becomes

P��� � exp�−
1

4�T
�

t0

t �mr̈�t�� + �ṙ + � �U��t��

�r
�

p�t��

− f��t���2

dt� +
d�

2m
�t − t0�� . �71�

These expressions correspond to those obtained by Onsager
and Machlup �12� for the harmonically bound Brownian par-
ticle. Note that the linear term appearing in the exponential
of Eq. �71�, and which arises from Eq. �70�, can be “hidden”
in the normalization of the probability function P��� as long
as one deals with a force G linear in p.

From Eq. �71�, we are able to recover Eq. �34� directly. In
fact, for the inverse path �̃, Eq. �71� reads

P��̃� � exp�−
1

4�T
�

t0

t �mr̈�t�� − �ṙ�t�� + � �U��t��

�r
�

r�t��

− f��t���2

dt� +
d�

2m
�t − t0�� , �72�

and thus we have, after straightforward manipulations,

P���

P��̃�
= exp� 1

T
�

t0

t

dt��−
p�t��

m
· �ṗ�t�� + � �U��t�

�p
�

r�t��

− r��t����� = �
x0

x dQ2

T
, �73�

where dQ2 is given by Eq. �35�.
While Eq. �71� is well known, we wish to emphasize the

relation of the entropy flow along a given trajectory �, with
the generalized Onsager-Machlup functional for that trajec-
tory, expressed by Eq. �73�.

V. DISCUSSION

We have obtained a compact derivation of the relation
between the probability of a given path in phase space and
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that of its time-reversed image in the specular manipulation
protocol. The ratio of the probabilities has been interpreted
as the entropy flow into the heat bath, by a suitable generali-
zation of the expression of the heat flow. Different fluctua-
tion relations can be derived from this key equality by simple
manipulations. The approach can be easily applied to more
complex systems, and to situations in which the energy func-
tion is not invariant under time reversal, due, e.g., to the
presence of magnetic fields. We have also shown how the
basic relation directly follows from the expression of the
path probability first established by Onsager and Machlup
�12� for the harmonically bound particle. We hope that the
present work can be useful in the investigation of more and
more general aspects of the nonequilibrium thermodynamics
of small systems.
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APPENDIX: DERIVATION OF THE EXPRESSIONS FOR
THE TIME DERIVATIVE OF THE ENTROPY

Let us first derive Eq. �45�. After substitution of Eqs. �2�
and �3� into Eq. �44�, we obtain

dS�t�
dt

= −� dx ln P� �

�r
· �−

p

m
P� +

�

�p
· ���

p

m
+

�U�

�r

− f��P + �T
�

�p
P�� =� dx� � ln P

�r
· �−

p

m
P�

+
� ln P

�p

· ���
p

m
+

�U�

�r
− f��P + �T

�

�p
P��

=� dx�P�
p

m
·
� ln P

�p
+ �TP� � ln P

�p
�2�

=� dx��T� p

Tm
+

� ln P

�p
�2

−
�

T

p

m

· � p

m
+

� ln P

�p
��P�x,t� , �A1�

as can be checked by some manipulation. Equation �A1� cor-
responds thus to Eq. �45�.

We can now prove Eq. �46�. We have

��ds�x�t�,t�
dt

�
x�t�=x

�
�

=��� �s�x�t�,t�
�r

· ṙ +
�s�x�t�,t�

�p
· ṗ

+
�s„x�t�,t…

�t
��

x�t�=x
�

�

. �A2�

The last term on the rhs is independent of the path, and its
average vanishes because of the normalization. Thus we are
left with

��ds„x�t�,t…
dt

�
x�t�=x

�
�

=� dxP�x,t�� �s�x,t�
�r

· �ṙ��

+
�s�x,t�

�p
· �ṗ��� , �A3�

where �¯�� is the average over the process realization alone,
constrained by the final state x�t�=x. For the process de-
scribed by Eqs. �2� and �3�, one obtains

�ṙ�� =
p

m
, �A4�

�ṗ�� = − �
p

m
−

�U�

�r
+ f� − �T

� ln P�x,t�
�p

. �A5�

Hence, Eq. �A3� becomes

��ds„x�t�,t…
dt

�
x�t�=x

�
�

= −� dxP� � ln P

�r
·

p

m
+

� ln P

�p

· �− �
p

m
−

�U�

�r
+ f� − �T

� ln P

�p
��

=� dxP
� ln P

�p
· ��

p

m
+ �T

� ln P

�p
�

=� dxP��T� p

Tm
+

� ln P

�p
�2

− �
p

m
· � p

Tm
+

� ln P

�p
�� , �A6�

which corresponds to Eq. �46�.
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